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S U M M A R Y  

A new modified Square Root model and two new modified Schoolfield models were evaluated for their ability to predict the growth rate of Yersinia 
enterocolitica as a function of temperature. The new Square Root model fits the data better than both the original Square Root model and the Zwietering 
Square Root model. Both new Schoolfield models, a six- and a four-parameter equation, fit the data better than the original Schoolfield model. The new 
four-parameter Schoolfield model was developed by removing the term describing low temperature inactivation from the new six-parameter Schoolfield model. 
Inclusion of the two extra parameters in the new six-parameter Schoolfield model (F = 318) did not significantly improve the fit compared to the new four- 
parameter Schoolfield model (F = 488). 

I N T R O D U C T I O N  

The Square Root and Schoolfield models predict bacterial 
growth rate or lag t ime as a function of temperature.  These 
models have typically been applied with either the square 
root or the natural  logarithm of growth rate as the dependent  
variable [4]. Alber  and Schaffner [1] discussed the statistical 
consequences of these data transformations. Homogenei ty  
of variance is an important  stochastic assumption for 
regression analysis. Data  transformation influences variance 
homogeneity by disproportionally altering the variance 
associated with each growth rate. The variances of the 
transformed growth rates should be examined for homogen- 

eity [1,4]. 
The experimental  procedure frequently employed for 

determining growth rates at different temperatures results 
in nonhomogeneous  variances. Growth rates are typically 
calculated from a series of concentrat ion measurements  at 
intervals throughout the entire exponential  phase of growth. 
At favorable growth temperatures the organism reaches the 
stationary phase rapidly and concentrat ion measurements  
may be made at short time intervals over a period of hours. 
At suboptimal temperatures it may take days or weeks for 
the organism to reach stationary phase. Measurements  are 
usually taken throughout  this longer log phase at large time 
intervals. This difference in time range results in growth 
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rate variances which increase as the magnitude of growth 
rate increases [1]. 

Data transformation can convert growth rate to a scale 
in which the variances are homogeneous.  It has been shown 
that the natural  logarithm is an appropriate transformation 
for growth rate data of Yersinia enterocolitica in brain heart  
infusion (BHI) broth [1]. This data set is used in this paper. 
Therefore all of the models compared here are applied with 
a natural  logarithm transformation.  

Square Root models 
The Square Root model was originally proposed by 

Ratkowsky et al. [3]. A natural  logarithm transformation of 
the Square Root model is given as: 

ln(k) = 2 1 n ( b ( T -  Train)(1 - e x p [ c ( T -  Tmax)])) (1) 

k = growth rate (time - I )  
b = regression coefficient (K -1 t ime -~  
T = temperature (K) 
Train = notional min imum growth temperature (K) 
c = regression coefficient (K -1) 
Tmax = notional maximum growth temperature (K) 

In Eqn 1 positive growth rates are predicted at tempera- 
tures above Tma,. Zwietering et al. [7] proposed a modifi- 
cation of the Square Root model which results in predictions 
of negative growth rates at temperatures above Tmax. The 
Zwietering modified Square Root model with a natural  
logarithm transformation is given as: 

ln(k) = ln([b(T - Tmi~)]2(1 - expIc ( r  - rmax)]}) (2) 



A new Square Root model was developed from Eqn 2 
and is given as: 

In(k) = 21n[ln([b(T- Train)]2{1 - exp [c (T-  Tmax)]})l 
(3) 

None of the parameters in Eqn 3 retain the same biological 
interpretation as in Eqns 1 and 2. Eqn 3 with k as the 
dependent variable is given as 

k = [ln([b(T - Tmin)12{1 - exp[c(T - Tm,x)]})] 2 (4) 

Schoolfield models 
The Schoolfield model was originally proposed by Sharpe 

and DeMichele [6] and subsequently modified by Schoolfield 
et al. [5]. The Schoolfield equation with a natural logarithm 
transformation is given as: 

In(k) =In 

o~. T [AH~,[ 1 

[AHL{ 1 [AH.{ 1 
1 exp[ R _ _ / ~  L 1)]  - 7 ) ]  + - + e x p L ~ t ~  

(5) 
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AH.  
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= growth rate (time -1) 
= growth rate at 25 ~ (time -1) 
= temperature (K) 
= universal gas constant (8.314 J K -1 mo1-1) 
= enthalpy of activation of the reaction catalyzed 

by the rate controlling enzyme (J mol 1) 
= change in enthalpy associated with low tempera- 

ture inactivation of the enzyme (J mo1-1) 
= temperature at which the enzyme is 50% inactive 

because of low temperature (K) 
= change in enthalpy associated with high tempera- 

ture inactivation of the enzyme (J mo1-1) 
= temperature at which the enzyme is 50% inactive 

because of high temperature (K) 

A new six-parameter Schoolfield model was developed 
and is given as: 

ln(k) = 21n 

o~, T [AH~[ 1 
p(25 t~) 2 ~ 8 e x p [ - ~ - [ 2 9 ~  - 1) J 

In 
[AHL{ 1 [AH~[ 1 

l + e x P [ R [ T ~ ,  L -~)J - 1T) ] - + e x p [ ~ - t ~  

(6) 

None of the parameters in Eqn 6 retain the same biological 
interpretation as in Eqn 5. Eqn 6 with no transformation is 
given as: 
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k; I In 

T [AH~{ 1 
p(25 ~ ~ e x p [  ~ - - 1 2 ~  - T) ] 

[AHL[ 1 _ 1~] [M/H/  1 
i + e x P [ R ~  T~I h T ) ] + e x p [ y l ~  - 1)1 

(7) 

Eqn 6 with X/k as the dependent variable is given as: 

~ = l n  

7" [M/~ i  1 _ 1)} 
[M/L[ 1 1~] r a / - / . / 1  

1 exp[ R / ~  T)J 

(8) 

A second new Schoolfield model was developed by removing 
the term which describes low temperature inactivation from 
Eqn 6. This new four-parameter modified Schoolfield model 
is given as: 

p(25 ~ ) ~ e x p [ ~ - [ ~ -  
ln (k)=21n In [AHH[ 1 1 ) ]  

1 + exp[~- /Z .~  " - 

(9) 

The three new models (Eqns 3, 6 and 9) were evaluated 
for their ability to predict the growth rate of Y. enterocolitica 
in BHI broth. The new Square Root model was compared 
with the original Square Root model and with the Square 
Root model developed by Zwietering et al. [7]. The new 
six-parameter and the new four-parameter Schoolfield models 
were compared with the original .Schoolfield model. 

MATERIALS AND METHODS 

All model parameter estimates were determined with 
Tablecurve 3.01 (Jandel Scientific, Corte Madera, CA), 
which uses the Levenberg-Marquardt algorithm. 

Initial parameter estimates for the original Square Root 
model (Eqn 1) and the Zwietering modifed Square Root 
model (Eqn 2) were determined from the procedure given 
by Ratkowsky et al. [3]. The final parameter estimates from 
the Zwietering modified Square Root model were used as 
initial parameter estimates for the untransformed new Square 
Root model (Eqn 4). The resulting parameter estimates 
were then used as initial parameter estimates for the natural 
logarithm transformed new Square Root model (Eqn 3). 

Starting parameter values for the original Schoolfield 
model (Eqn 5) were calculated by the method given by 
Schoolfield et al. [5]. The final parameter estimates from 
the original Schoolfield model were used as initial parameter 
estimates for the square root transformed new six-parameter 
Schoolfield model (Eqn 7). The resulting final parameter 
estimates were in turn used as initial parameter estimates 
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TABLE 1 

Square Root models 

Model Eqn SSE Parameter t-value 
number estimates 

Square Root 1 0.397 b = 0.0316 30.6 
Tmin = 267 651 
c = 0.627 4.72 
Tmax = 316 1954 
b = 0.0320 30.9 

Zwietering Square Root 2 0.356 T~,~n = 267 684 
c = 0.413 4.57 
T~,~ = 315 4056 
b = 0.0209 33.6 

New Square Root 3 0.294 Tm~, = 221 134 
c = 0.744 4.18 
Tm~x = 316 1763 

All models fitted with a natural logarithm transformation. SSE = sum 
of squared error on the logarithmic scale. 

for both the new six-parameter (Eqn 6) and the new four- 
parameter (Eqn 9) Schoolfield models. 

RESULTS AND DISCUSSION 

Square Root  models 
Regression results of the Square Root models are given 

in Table 1. The Zwietering Square Root model (Eqn 2) has 
a 9.6% lower sum of squared error (SSE) when compared 
to the original Square Root model (Eqn 1). The new Square 
Root model (Eqn 3) has a 17.4% smaller SSE than the 
Zwietering Square Root model and a 25.9% smaller SSE 
than the original Square Root model. 

Fig. 1 shows that above 306 K the original Square Root 
model (A) generally overpredicts growth rates, whereas both 
the Zwietering (B) and the new Square Root (C) models 
generally predict growth rates which are smaller and closer 
to the observed values. Y. enterocolitica loses motility above 
303 K [2]. This may have depressed the growth rate at 
temperature greater than 303 K and may have resulted in 

the original Square Root model overpredicting growth rate 
in this temperature range. 

The new Square Root model contains several singularities 
which resulted in computational difficulties during regression. 
A singularity occurs when a mathematical expression is 
undefined. Examples include division by zero and the 
logarithm of a number less than or equal to zero. If a 
singularity is encountered or closely approached during 
regression it prevents the algorithm from converging. The 
precision of the software will control the sensitivity of the 
algorithm to the singularities. The likelihood of encountering 
or closely approaching a singularity is dependent on the 
data. 

Singularities occur in the untransformed new Square Root 
model (Eqn 4) when Tmin or  Tma x equals T and when b or 
c equals zero. Any of these parameter values will result in 
[b(T- Train)]2{1 - e x p [ c ( T -  Tmax)]} equaling zero, and 
l n ( [ b ( T -  rmi.)]2{1 - e x p [ c ( r -  rmax)])) being undefined. 
Due to the natural logarithm transformation, the same 
singularities occur in Eqns 1 and 2. An additional singularity 
is introduced into the new Square Root model by the natural 
logarithm transformation. When [b(T - Tmin)]2{1 - exp[c(T 
- Tmax)]} is between zero and one the natural logarithm of 
this expression is a negative value. When [b(T - Tmin)] 2 
{1 - exp[c( r  - Tm,x)]} is equal to one the natural logarithm 
of this expression is zero. In either case ln[ln([b(T - 
rmi.)]2{1 - exp[c ( r  - Tmax)]})] is undefined (Ratkowsky, 
personal communication). 

The initial parameter values influence the likelihood of 
encountering singularities in the new Square Root model. 
When the final parameter estimates from the Zwietering 
Square Root model (Eqn 2) were used as the initial 
parameters estimates for the new Square Root model 
(Eqn 3), a singularity was encountered and the algorithm 
fails to converge. This combination of initial parameter 
estimates resulted in [ b ( T -  Tmi,)]2{1 - exp[c(T - Tmax)]} 
approaching 1 at observed T values of 296 and 301 K. When 
this expression equals 1 the algorithm encounters a singularity 
and terminates before convergence. 

The singularities in the new Square Root model (Eqn 3) 
may be avoided by a judicious choice of starting parameter 
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Fig. 1. Square Root models: (A) original Square Root model (Eqn 1); (B) Zwietering Square Root model (Eqn 2); (C) new Square Root 
model (Eqn 3). 



estimates. Regression with the untransformed new Square 
Root model (Eqn 4) converged properly, because the model 
does not contain the additional singularity introduced by 
the natural logarithm transformation. By using the final 
parameter estimates from Eqn 4 as initial parameter estimates 
for Eqn 3 the singularities were avoided and the algorithm 
converged properly. Eqns 3 and 4 are different transform- 
ations of the same model. Although their parameter values 
are not equal, they are similar. 

Schoolfield models 
A comparison of the Schoolfield models is given in Fig. 2. 

As with the Square Root models, the modification of the 
Schoolfield model improved the fit of the data. The SSE 
for the new six-parameter Schoolfield model is 33% lower 
than the SSE for the original Schoolfield model. 

The new six-parameter Schoolfield model (Eqn 6) contains 
singularities associated with the natural logarithm which 
parallel those in the new Square Root model. These 
singularities occur when a combination of parameter values 
result in the argument of either of the two logarithms 
equaling zero or a negative number. For the same reason 
that final parameter estimates from the Zwietering Square 
Root model (Eqn 2) cannot be used as initial parameter 
estimates for the logarithm transformed new Square Root 
model (Eqn 3), final parameter estimates from the School- 
field model (Eqn 5) cannot be used as initial parameter 
estimates for the natural logarithm transformed new six- 
parameter Schoolfield model (Eqn 6). 

The regression algorithm failed to converge when final 
parameter estimates from Eqn 5 were used as initial para- 
meter estimates for Eqn 7. However, the regression algorithm 
converged successfully when final parameter estimates from 
Eqn 5 were used as initial parameter estimates for the 
square root transformed new six-parameter Schoolfield model 
(Eqn 8). When the final parameter estimates from Eqn 8 
were used as initial parameter estimates for Eqn 6 the 
singularities were circumvented allowing the algorithm to 
converge successfully. 

The new six-parameter Schoolfield model may be overpar- 
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ameterized for the data set. Table 2 shows that four of the 

parameters do not contribute significantly to the model 
predictions (a = 0.05). Removing the term which describes 
low temperature inactivation produced a new four-parameter 
Schoolfield model (Eqn 9) in which all of the parameters 
contribute significantly to the model predictions. The 
improvement of the new six-parameter model over the four- 
parameter model seen in Fig. 2 is not significant (F = 318, 
F = 488, respectively). 

CONCLUSIONS 

All of the new models (Eqns 3, 6 and 9) fit the data 
better than the original Square Root model, the Zwietering 
Square Root model, and the original Schoolfield model. 

TABLE 2 

Schoolfield models 

Model Eqn SSE Parameters t-value 
number 

Schoolfield 5 0.412 p25 ~ = 0.883 16.3 
AHy, = 8.51 • 103 6.68 
2~HL = -4.25 x 104 -5.56 
T�89 = 279 162 
AHH = 4.11 X 10 s 4.88 
T~H = 314 1629 

New six-para- 6 0.275 p25 ~ = 1.68 x 103 0.217" 
meter AHy, = -5.94 • 104 -0.963* 
Schoolfield AH E = -6.40 • 104 -1.04" 

T~L = 317 60.6 
AH u = 4.35 • l0 s 0.554* 
T m = 315 242 

New four-para- 9 0.337 p25 ~ = 2.64 51.6 
meter AHy~ = 4.48 • 104 31.3 
Schoolfleld AHH = 2.16 • 10 s 5.13 

T~H = 315 3054 

* Parameter does not significantly contribute to model predictions 
(c~ = 0.05). 
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Fig. 2. Schoolfield models: (A) Original Schoolfield model (Eqn 5); (B)new six-parameter Schoolfield model (Eqn 
parameter Schoolfield model (Eqn 9), 
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6); (c) new four- 
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The new four-parameter Schoolfield model has a better fit 
than the original six-parameter Schoolfield model, is more 
parsimonious and has tighter parameter confidence intervals, 
as indicated by larger parameter t-values. 

One of the goals in predictive microbiology is to develop 
models which fit microbiological data as precisely as possible, 
without violating any statistical or biological principles. The 
new models presented in this paper have an improved fit to 
our data set when compared to the original unmodified 
models. A future objective is to determine if these new 
models are suitable for other organisms. 
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